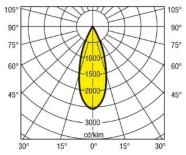


Robert J. Radley LC, LEED AP BD+C

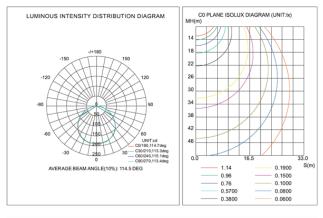
Presentation Goal Outline

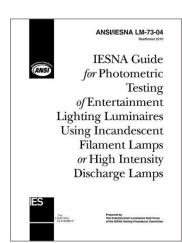
- Explain the fundamental principals of rendering software
- Review the basic formulation of modern lighting analysis software
- Understand how to differentiate between photometric software types
- Understand how rendering software depicts light and architecture
- Analyze rendering presentation examples and compare to real world project results

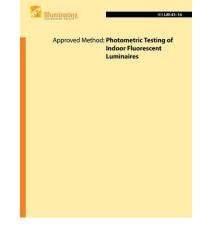


Photometrics

- Root word Photometry (Greek words for Light and Measure)
- Photometric Information from luminaires
 - Measurement of the amount and direction of light emitted by a luminaire
- Testing and Analysis methods
- Ganiophotmeter
- Manufacturer published IES files

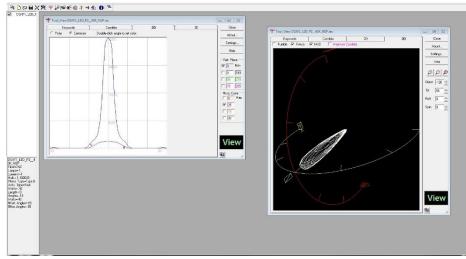



NAME: LD008AL14640	TYPE: Panel Light	WEIGHT: 0.23Kg	
DIM.: Ø145mm	INPUT POWER(W).: 8	SUR.: 270	
	CCT(K).: 4000K±250	PROTECTION ANGLE:	

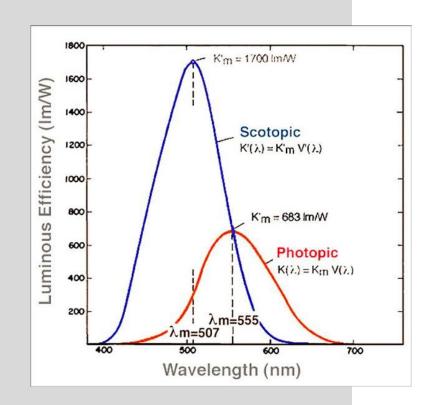

DA	TA OF LAN	IP	PHOTOMETRIC DATA Eff: 67.09lm/W		m/W	
MODEL SMD 2835		Imax(cd)	188.93	S/MH(C0/180)	1.27	
NOMINAL F	POWER(W)	8.16	LOR(%)	100.0	S/MH(C90/270)	1.29
RATED VO	LTAGE(V)	240	TOTAL FLUX(Im)	547.5	hUP,DN(C0-180)	1.0,49.9
NOMINAL F	FLUX(Im)	547.5	CIE CLASS	DIRECT	hUP,DN(C180-360)	1.0,50.1
LAMPS INS	SIDE	1	hup(%)	0.0	CIBSE SHR NOM	1.25
TEST VOL	TAGE(V)	219.8	hdown(%)	100.0	CIBSE SHR MAX	1.35

C Range: 0 - 360DEG C Interval: 5.0DEG Test Speed: HIGH Temperature:25.3DEG Operators: had peng fei Test Date:2013-08-12

y Range: 0 - 90DEG yInterval: 0.5DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V2.0.275 Humidity.65.0% Test Distance:7.000m [K=1.0000] Remarks:


Goniophotometer
Types and
Photometric
Coordinates

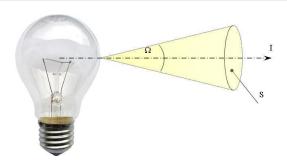
- Role of Science data in Lighting Design
 - Experiments for relationship between more-or-less (simply defined) luminous input
 - Utility of the data about lighting sources acquired on that basis
 - Visual performance testing
 - Measurement of speed and accuracy



Relevance of Photopic, Mesopic and Scotopic

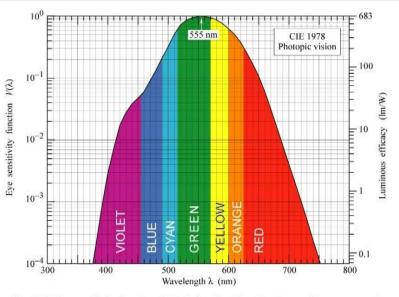
- Range of Human vision adaptation level
- Human eye study
- Photopic adaptation level to overall brightness (3cd/m2)
- Mesopic adaptation level to overall brightness spectrum (.01cd/m2)
- Scotopic adaptation level blue-green spectrum (.001cd/m2)

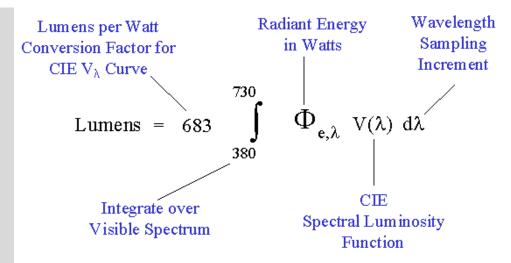
Understanding Light

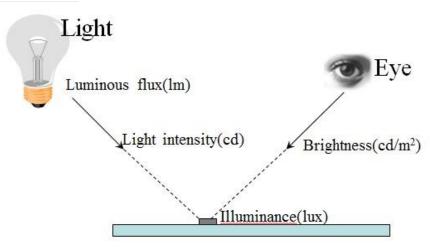

- One of the Visual Stimuli
- Interaction of surfaces and color, texture
- Potential and comparison levels
- Meaningful definition to light

Software Defines Light

- Radian watts of source is measured in small wavelength bands
- Each wavelength is weighted (multiplied) by the luminous efficiency
- Photopic vision CIE 1978, broad bands of light

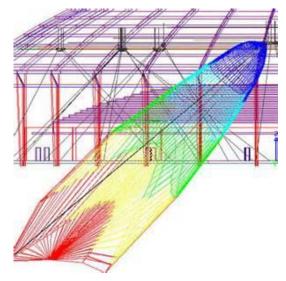


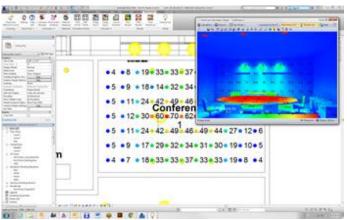

Fig. 16.7. Eye sensitivity function, $V(\lambda)$, (left ordinate) and luminous efficacy, measured in lumens per Watt of optical power (right ordinate). $V(\lambda)$ is greatest at 555 nm. Also given is a polynomial approximation for $V(\lambda)$ (after 1978 CIE data).

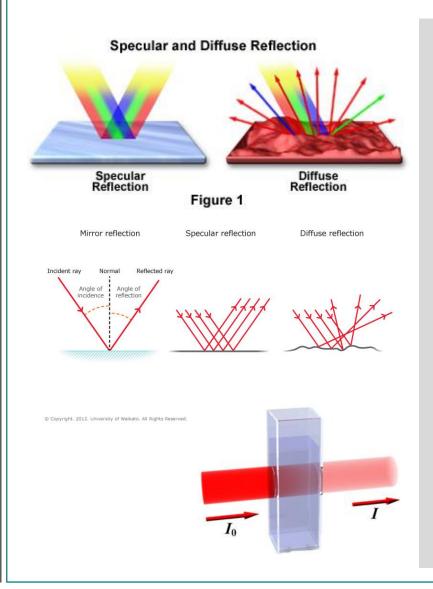

Light-Emitting Diodes (Cambridge Univ. Press) www.LightEmittingDiodes.org

Luminous Flux

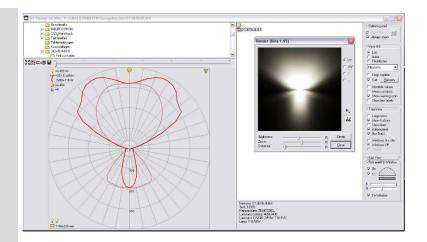
- Defined as "Visually evaluated" radiant power
- Strength of all photo metrics depends on how "Visually evaluated" is defined
- Radiant powers ability to provoke the perception of brightness
- Development of luminous power
- Luminous strength of one wavelength compared to another






Luminous Flux

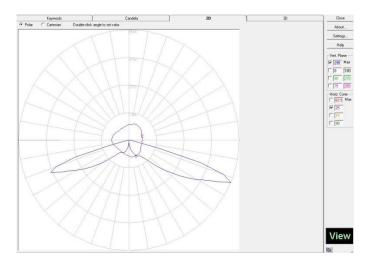
- "Ray of Light" very small cone
- Represented by a single arrow then collected into bundles
- Bundles then form densities
 - Surface (lumens/area)
 - Spatial
 - Light forms density

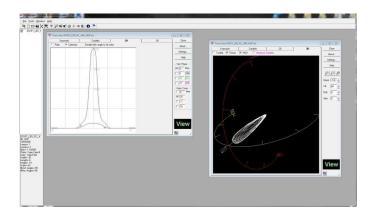


Inter-reflection of light

- Balance between the generation and absorption of light
- Luminous potential of surfaces
 - Glass
 - Wood
 - Ice
 - metal
- Reflectance
 - Diffuse
 - Directional
- Transmittance
 - Diffusing
 - Directional

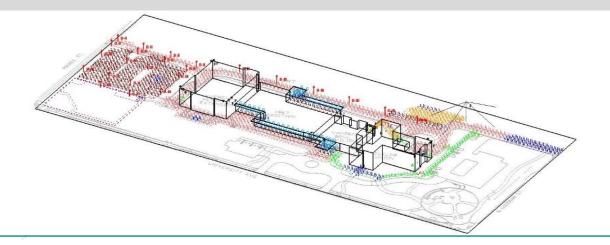
- Photometric Data Files and Their Format
 - IES LM-63
 - IESNA Standard 1986
 - LM-63-1986
 - CIBSE TM-14
 - British TM-14
 - CIE 102-1993
 - International (not used)
 - EULUMDAT
 - European standard

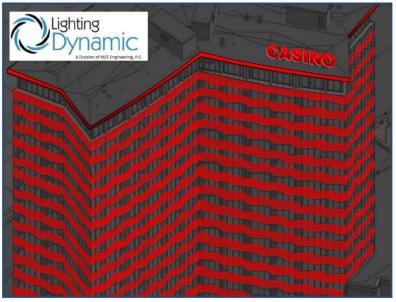



```
[TEST] 1
  3 [TESTLAB]
    [TESTDATE] 2014-11-21
    [ISSUEDATE] 2014-11-21 14:52:20
    [LAMPPOSITION] 0.0
    [OTHER] EVERFINE GO-2000A_V1 SYSTEM
 10 [LUMINAIRE] HiCloud 150W 5000K
 11 [LAMP] 120DEGREE 5000K CRI73
 12 TILT-NONE
 13 1 18434.4 1 37 181 2 2 -0.230 -0.230 0.22
 15 -90.0 -85.0 -80.0 -75.0 -70.0 -65.0 -60.0 -55.0 -50.0 -45.0
 16 -40.0 -35.0 -30.0 -25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0
 17 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0
     60.0 65.0 70.0 75.0 80.0 85.0 90.0
19 -90.0 -89.0 -88.0 -87.0 -86.0 -85.0 -84.0 -83.0 -82.0 -81.0
20 -80.0 -79.0 -78.0 -77.0 -76.0 -75.0 -74.0 -73.0 -72.0 -71.0
21 -70.0 -69.0 -68.0 -67.0 -66.0 -65.0 -64.0 -63.0 -62.0 -61.0
22 -60.0 -59.0 -58.0 -57.0 -56.0 -55.0 -54.0 -53.0 -52.0 -51.0
```


IES File Viewer

- Evaluate IES matrix file
- Distribution analyzation
- Orientation of file for REVIT
- Compare manufacturers data
- Evaluate "equal" products
- Quick check of BUG ratings

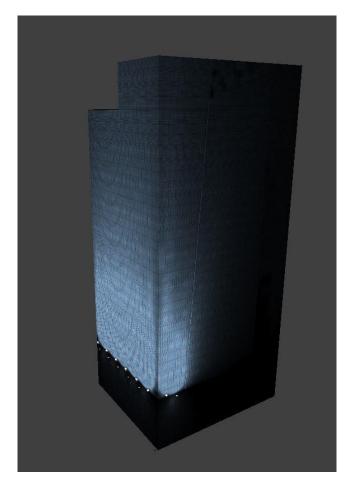


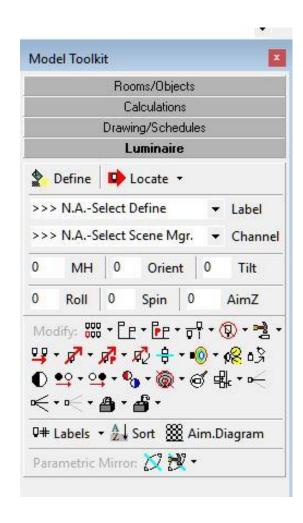

Rendering Role for Lighting Design not Architecture

- Predict the lighting potential
- Amounts Ratios and Gradients
- Architectural Space definition and Potential Glare
- Predict the movement of the Sun
- Reflection of light
- Code compliance

Architectural Rendering Software

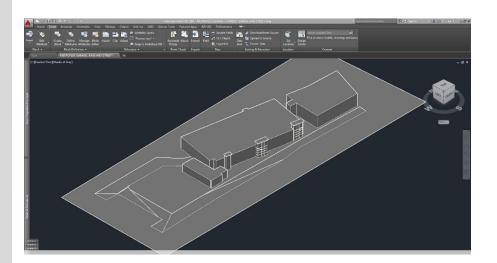
- 3D MAX Design Studio
- Archicad
- Revit
- Sketch UP
- Rhinoceros
- Photoshop

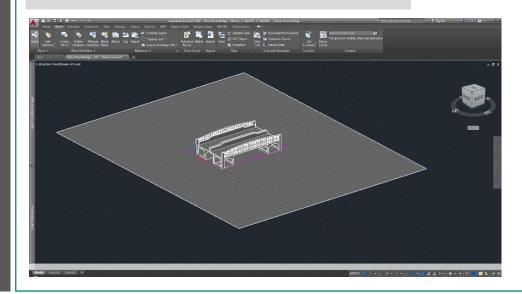




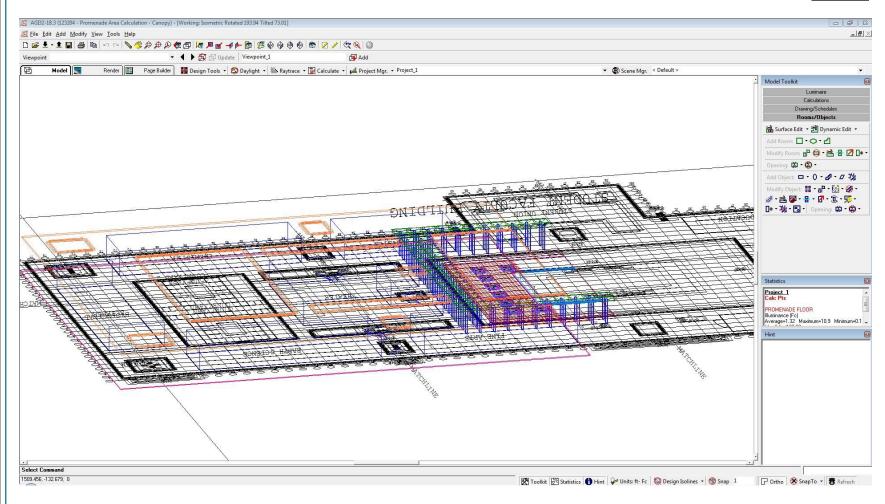
Lighting Rendering Software

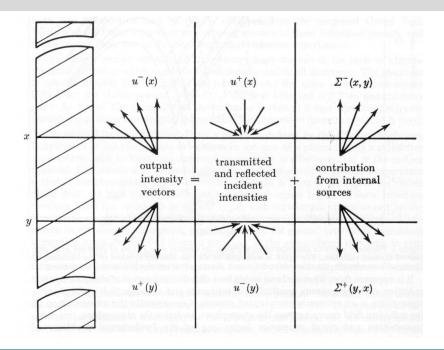
- AGI 32
- Visual Professional
- DIA Lux
- Lumen Designer
- Radiance
- Elumtools (AGI32 REVIT)
- Lite Pro DLX




- Components of a Photometric Calculation File
 - Solids
 - Rooms
 - Luminaires
 - Calculation Planes
 - Objects
 - Rendering

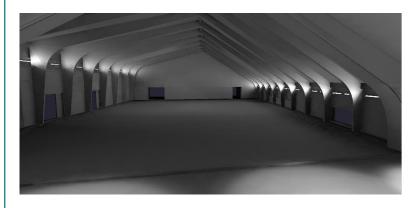
- Building a Rendering File
 - Export existing REVIT model
 - Optimize for calculation
 - Build in 3D software
 - Build in lighting software





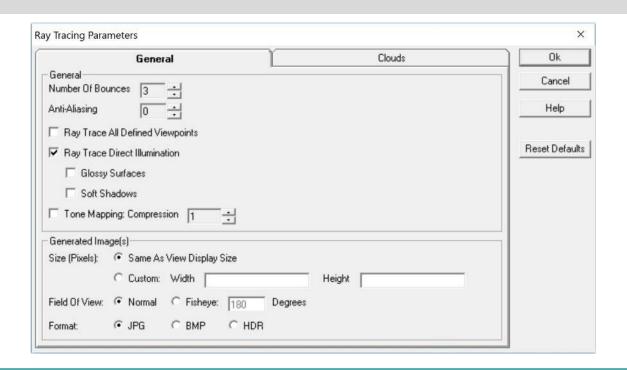
Types of Renderers

- Radiative transfer (also called radiosity)
- Ray Tracing
- Hybrids (Radiative transfer followed by a single-bounce ray tracing)



Radiative transfer

- Surface existences determined and displayed
- Possible dependence on discretization
- View-position independent
- Moderate execution times
- Granular presentation


Ray Tracing

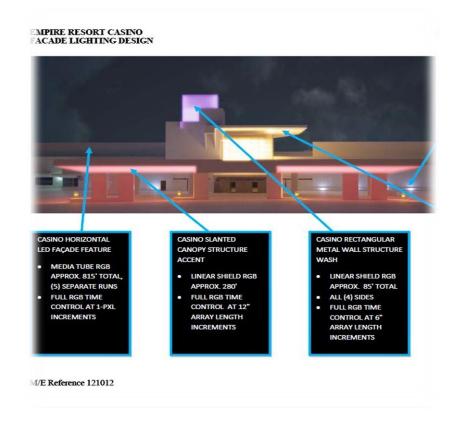
- Light sources emit rays that are traced through the system of surfaces, ending up at the viewing point
- Rays are traced (backward) from the viewing point to surfaces and light sources
- Reflections spawn "daughter rays" that are also traced
- Result is view-position dependent
- Long execution times

Ray Tracing

- Settings and output are crucial
- Overlapping surfaces can be come distorted

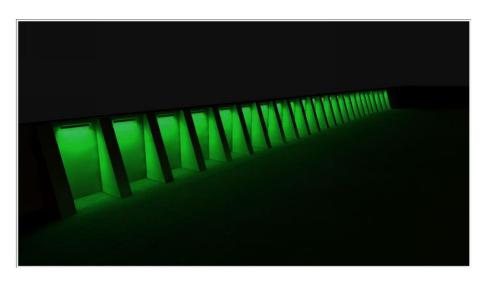
Hybrid

- "basic" rendering produced with radiative transfer
- Rays traced from light sources to the view position, after reflecting off a nondiffuse surface
 - Glints
 - Mirror-effects



Purpose and Goals of Rendering

- Assess a lighting design
- Client presentation
- Marketing
- Compare color change design vs. white only
- Assess the way color light takes to materials
- Code official verification



METROPLEX PARKING GARAGE SCHENECTADY, NY

METROPLEX PARKING GARAGE SCHENECTADY, NY

Schenectady City Hall Lighting 08/25/1

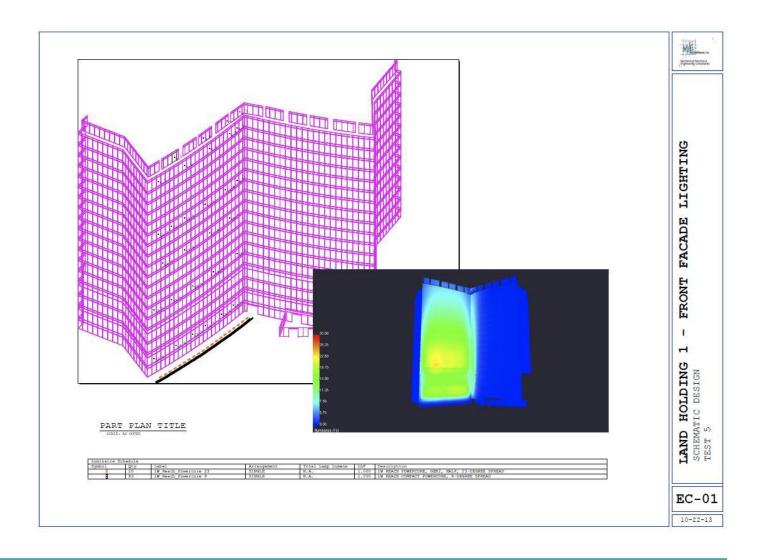
OPTION 1
FLOOD LIGHTING

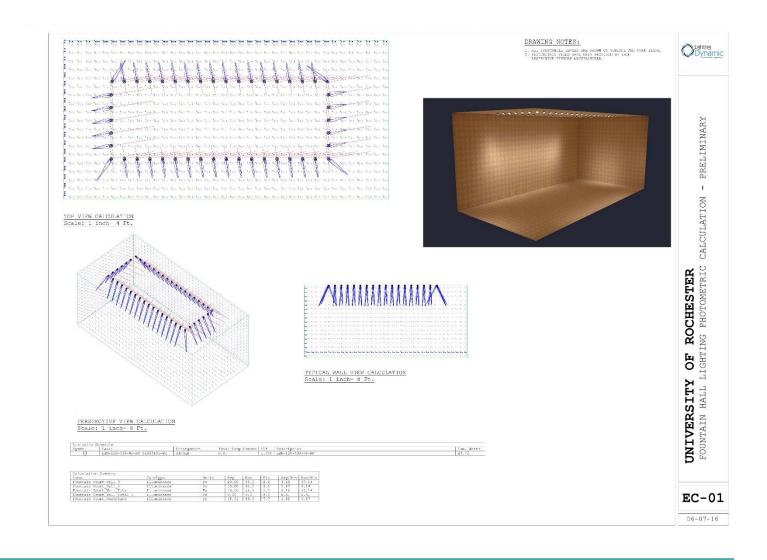
Erie Boulevard Bridge Lighting

UPLIGHT COLOR WASH
INSIDE WASH & OUTSIDE ACCENTS

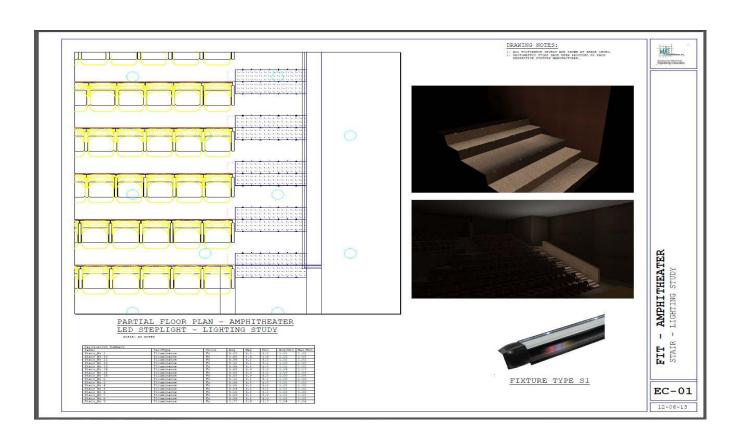
Erie Boulevard Bridge Lighting 05/23/2017

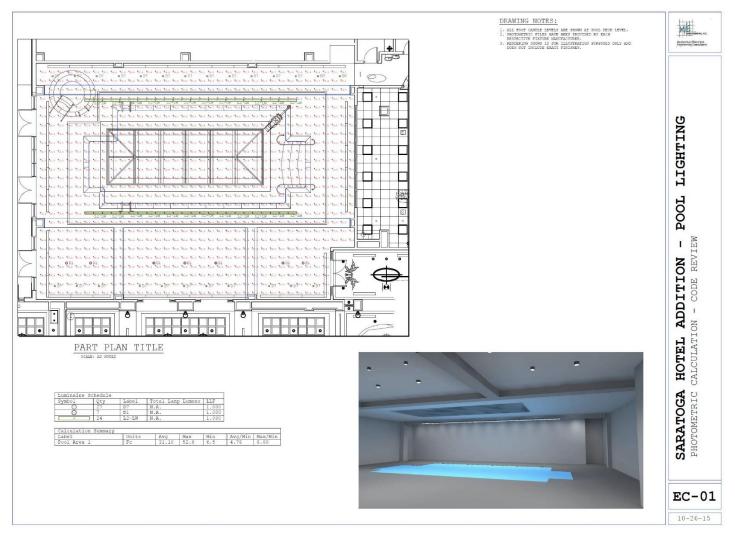
UPLIGHT COLOR WASH
INSIDE WASH & OUTSIDE ACCENTS

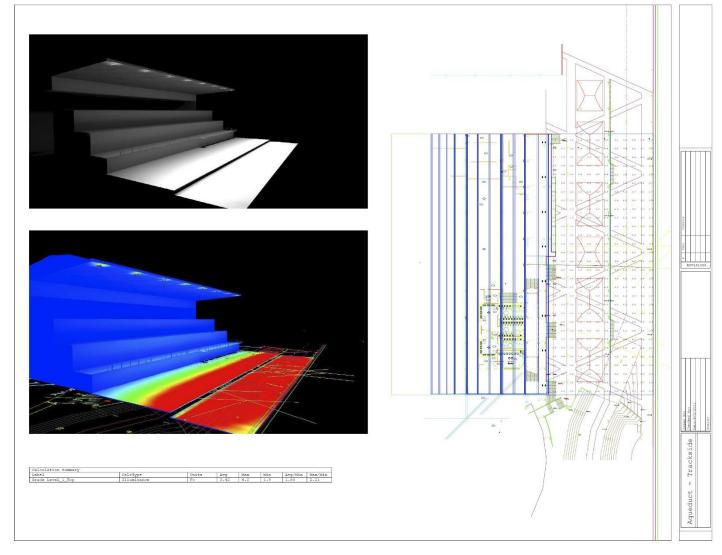


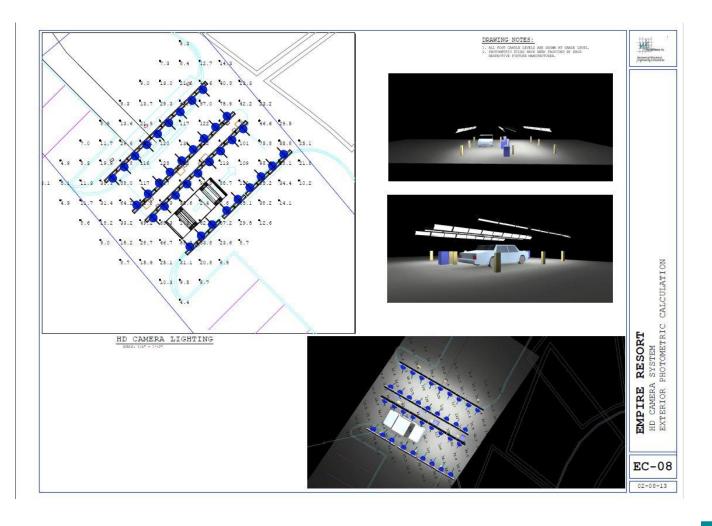

Chain Link Façade Material

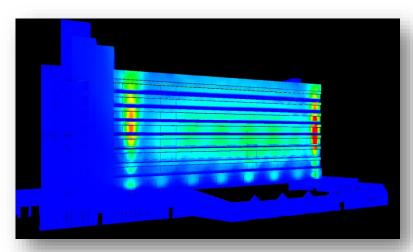
Office Mock-up of Chain Link Material

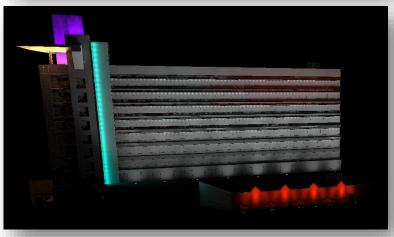


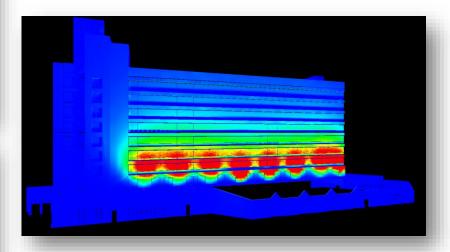




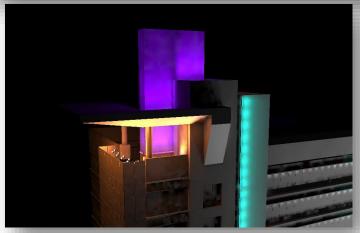


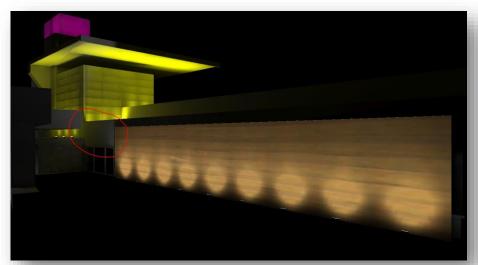


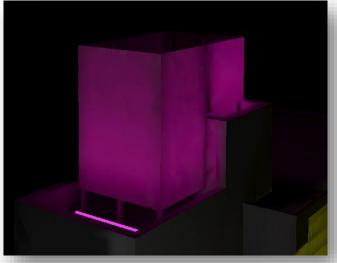

Existing Facility Image



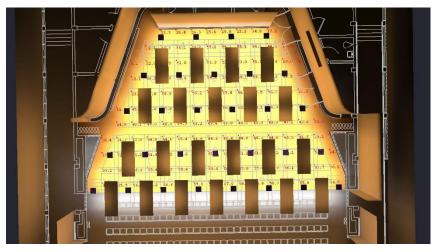
Existing Facility Rendering

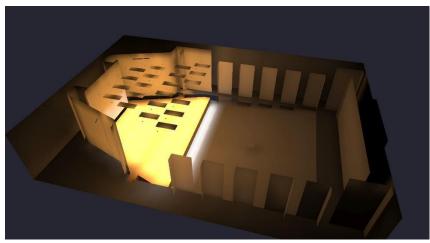




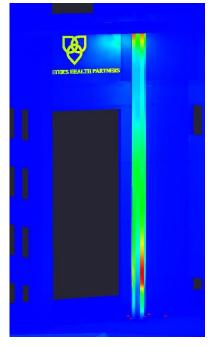


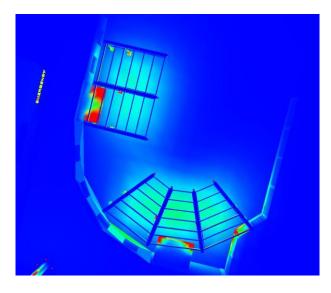


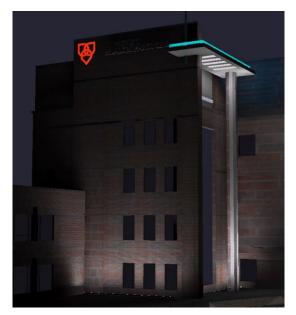


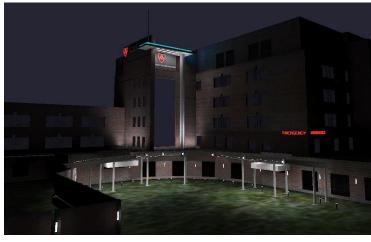


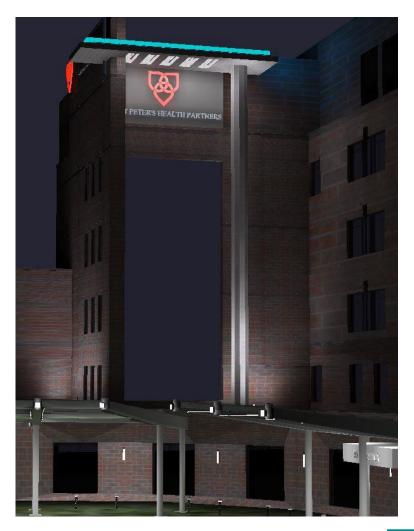




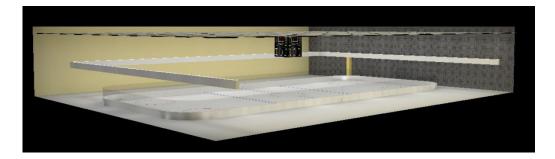


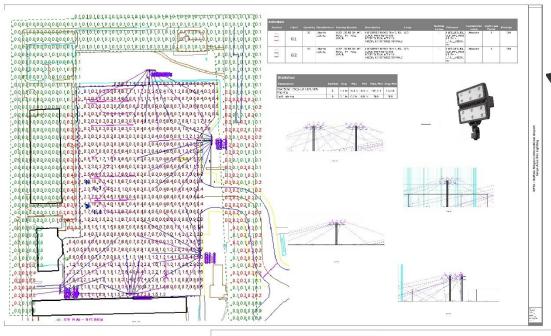


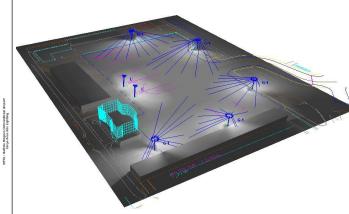


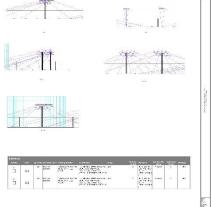


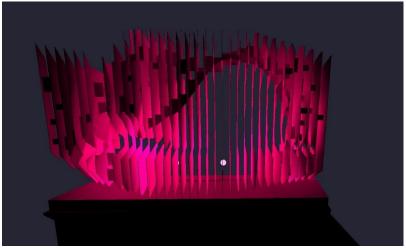


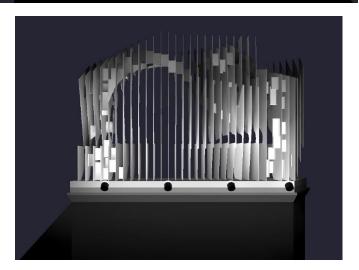


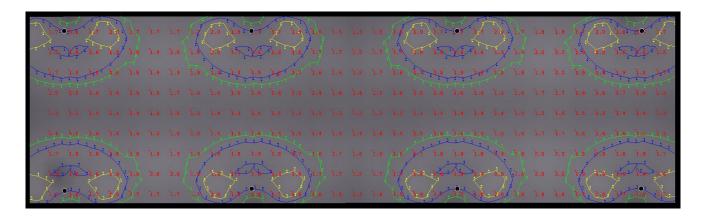


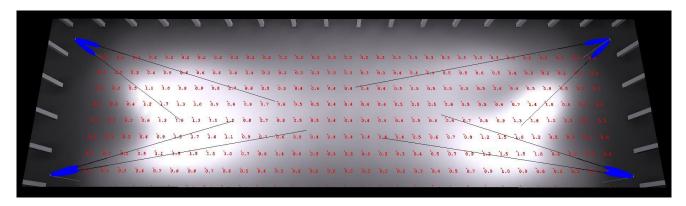


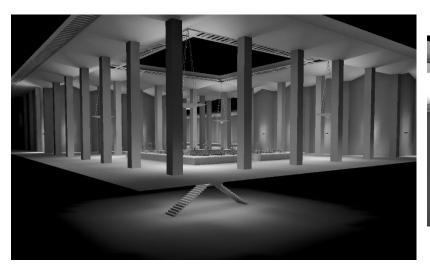


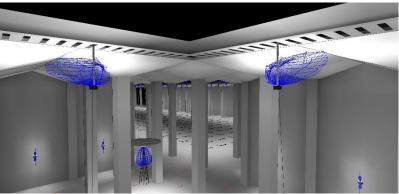



										-
										2
1	91	1177717 (0)	19/1/89/03	us cc	57.33	733.5	75.35	112751988	107147479	9 3 00
2	C.	1127742.00	1071253.00	65.00	62.33	214.37	79.01	1127551.00	.67699C O	3.00
3	61	1127742,00	1021265.00	65,00	62.00	248.01	83,12	1127405,80	1671100.0	93,0
	61	1127715.00	13/1/2/33	65.00	04.00	76 6.41	1411	112/213/00	20/2000	1.00
5	e:	1127682.00	1070078.00	65.60	52.30	317.43	77.33	1127 35.00	.070882.0	9 3.60
5	Ct	1127681.00	1070642.00	65.00	62.00	210.85	67.00	1127513.00	:0708:::0	3.00
1	6.5	1127687.00	13755430	ESAC	57.00	7h1.3e	7557	117/2/5/00	Sugres 2.14	* 6,000
9	d:	1127602.00	1373000.33	65.00	02.00	205.05	79.29	1127352.00	.070700.0	03.C
9	C.	1127337.00	1070452.00	65.00	62.33	77.20	71.5-	1127513.00	.070402.0	3.00
1	0	1127742.00	13/1747.00	57/00	5/.33	198.15	A430	112-550.00	10,000en	9.00
2	62	1127712.00	1071229.00	57.CC	27.33	230.07	\$1.05	1127**1.00	1071014.0	93.C
3	C2	1127742.00	1071271.00	57.00	57.33	256.23	82.5-	11273-6.00	.0774 0	00.CC
4	0	1127742.00	1071783.00	57,00	57.00	292.66	23.82	1127559,00	1671887.0	33.0
5	62	1127602.00	10/09/6/00	57.CC	57.33	211.74	75.33	1127175.00	1690,77.0	9.3.00
0	02	1127682.00	1070000.00	57.00	57.00	271.65	77.6	1127-22.00	.070000.0	00.00
2	C2	1127682.00	1070672.00	57,00	57.33	209.CE	83,75	1127375.00	:070842.0	33.0
9	62	1127683.00	13/3594.00	SARC	57.33	310.14	75.90	112/521.00	10/08/20	* 3.00
0	02	1127295.00	1070452.00	27.00	27.00	205.00	39.58	1127151.00	.070304.0	03.C C
10	C:	1127301.00	1073482.00	65.00	62.33	243.87	70.25	1127253.00	.0706.8.0	3.00
11	61	112711500	10/95/20	ES.UC	533	4.:0	7300	112732730	Supress. of	- 3.00
12	g;	1127325.00	1070452.00	65.00	62.33	25.00	55.29	1127391.00	1070293.0	03.CC
13	C.	1127305.00	1371638.33	65.66	62.33	240.30	79.52	11271000	.07.472.0	0 3.CC
14	CI	1127431.00	13/1538.03	th.U.	65-33	138.65	15.75	112-505.00	1071440.0	3.00
15	g:	1127119.00	19/19/8/39	65.00	54.00	1/2.6	75.75	1127159.00	1071778-9	9.3000
16	C.	1127407.00	1071038.00	C5.CC	62.30	197.25	77.43	1127723.00	.07.272 0	0.00
17	C.I	1126537.00	1373457.33	65.00	62.00	50.87	74.94	1127157.00	1070488.0	5 3.00
19	61	1126/07/2.00	13/29/533	15.00	55.00	75.2E	AM	112/1.638	10/07/08/0	1.00
10	G:		1070491.00		02.00	62.22		1127255.00		
20	C:		1070460.00		62.33	261.45		1125337.00		
13	62		10/95/20		5/23	755.70		1127299300		
11	63		1070452.00		27.33	12.71		1127395.00		
12	C2		1073452.00			48.22		1127452.00		
15	0		13/15/93/20		V-33	118.24		112/5/2000		
1'	92		1071558-00		57.33	159.67		1127525.00		
15	C2		1071030.00		\$7.00	184.67		1127310.00		
18	(2		1371638.03		57.33	218.72		1127231.00		
17	69		137999-00		57.33	266.7		112991240	1070451.0	
19	G2		1070187.00		27.00	49.42			.07072.0	
10	C2		1273475.02		57.33			1126037.00		
23	60		137.955.00		V.33	der		11271-0300	10,9540.0	0.330
3	L	1127874,00	1071045.00		65.33	0.00	0.00			
3	L	1127075.00	1070016.00	65.00	65.33	0.00	0.00			









COFFEE & TO GO - CALCULATION RENDERING

SHOPPING AREA - CALCULATION RENDERING

BAIR AREA - GALCULATION RENDERING

SHOPPINGWAREHOUSE - CALCULATION RENDERING

Rendering in Conclusion

- Efficient use of software
- Understanding the goal of the rendering
- Understanding who you are presenting to and to what format
- Tool for design, used in conjunction with real world product study
- Aiming diagrams and complete team process
- Code compliance or design check

